UIT-DANGNT-CLNLP at SemEval-2017 Task 9: Building Scientific Concept Fixing Patterns for Improving CAMR
نویسندگان
چکیده
This paper describes the improvements that we have applied on CAMR baseline parser (Wang et al., 2016) at Task 8 of SemEval-2016. Our objective is to increase the performance of CAMR when parsing sentences from scientific articles, especially articles of biology domain more accurately. To achieve this goal, we built two wrapper layers for CAMR. The first layer, which covers the input data, will normalize, add necessary information to the input sentences to make the input dependency parser and the aligner better handle reference citations, scientific figures, formulas, etc. The second layer, which covers the output data, will modify and standardize output data based on a list of scientific concept fixing patterns. This will help CAMR better handle biological concepts which are not in the training dataset. Finally, after applying our approach, CAMR has scored 0.65 F-score1 on the test set of Biomedical training data2 and 0.61 F-score on the official blind test dataset.
منابع مشابه
RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy
Two extensions to the AMR smatch scoring script are presented. The first extension combines the smatch scoring script with the C6.0 rule-based classifier to produce a human-readable report on the error patterns frequency observed in the scored AMR graphs. This first extension results in 4% gain over the state-of-art CAMR baseline parser by adding to it a manually crafted wrapper fixing the iden...
متن کاملCAMR at SemEval-2016 Task 8: An Extended Transition-based AMR Parser
This paper describes CAMR, the transitionbased parser that we use in the SemEval-2016 Meaning Representation Parsing task. The main contribution of this paper is a description of the additional sources of information that we use as features in the parsing model to further boost its performance. We start with our existing AMR parser and experiment with three sets of new features: 1) rich named e...
متن کاملICL-HD at SemEval-2016 Task 8: Meaning Representation Parsing - Augmenting AMR Parsing with a Preposition Semantic Role Labeling Neural Network
We describe our submission system to the SemEval-2016 Task 8 on Abstract Meaning Representation (AMR) Parsing. We attempt to improve AMR parsing by exploiting preposition semantic role labeling information retrieved from a multi-layer feed-forward neural network. Prepositional semantics is included as features into the transition-based AMR parsing system CAMR (Wang, Xue, and S. Pradhan 2015a). ...
متن کاملMayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications
In this paper, we present MayoNLP’s results from the participation in the ScienceIE share task at SemEval 2017. We focused on the keyphrase classification task (Subtask B). We explored semantic similarities and patterns of keyphrases in scientific publications using pre-trained word embedding models. Word Embedding Distance Pattern, which uses the head noun word embedding to generate distance p...
متن کاملTakeLab at SemEval-2017 Task 6: #RankingHumorIn4Pages
This paper describes our system for humor ranking in tweets within the SemEval 2017 Task 6: #HashtagWars (6A and 6B). For both subtasks, we use an off-the-shelf gradient boosting model built on a rich set of features, handcrafted to provide the model with the external knowledge needed to better predict the humor in the text. The features capture various cultural references and specific humor pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017